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EIGENVALUES OF THE ANTIPLANE-SHEAR

CRACK PROBLEM FOR A POWER-LAW MATERIAL

UDC 539.376L. V. Stepanova

This paper discusses the problem of finding the eigenvalue spectrum in determining the stress and
strain fields at the tip of an antiplane-shear crack in a power-law material. It is shown that the
perturbation method provides an analytical dependence of the eigenvalue on the material nonlinearity
parameter and the eigenvalue of the linear problem. Thus, it is possible to find the entire spectrum
of eigenvalues and not only the eigenvalue of the Hutchinson–Rice–Rosengren problem.

Key words: antiplane-shear crack, power-law constitutive equations, eigenvalue, eigenvalue spec-
trum, perturbation method.

1. Problem of Determining Eigenvalues in Nonlinear Fracture Mechanics. In modern nonlinear
fracture mechanics, eigenvalue problems often arises in studies of crack-tip stress–strain fields in materials with
nonlinear constitutive equations. For example, in studies of the stress and strain (strain rate) fields in a material
with power-law constitutive relations (power-law nonlinear elastic strain, power-law plastic strain hardening law, the
Bailey–Norton law of steady-state creep theory) using the eigenfunction expansion method, it is necessary to solve
systems of nonlinear ordinary differential equations with the boundary conditions of no surface loads at the crack
faces and symmetry conditions at the crack extension. It should be noted that the resulting system of nonlinear
ordinary differential equations contains a parameter (eigenvalue) which needs to be determined in order to find a
nontrivial solution of the system of ordinary differential equations that satisfies the indicated boundary conditions.
In nonlinear fracture mechanics, one eigenvalue of the Hutchinson–Rice–Rosengren problem is known [1, 2]. In a
material hardening according to the power law

εij = (3/2)Bσn−1
e sij , (1.1)

where εij are the strain tensor components, sij are the stress deviator components; σe is the stress intensity, B is
a material constant determined experimentally, and n is the material nonlinearity parameter, the crack-tip stress
field is represented as

σij(r, θ) = (J/(BInr))1/(n+1)σ̃ij(θ, n). (1.2)

Here J is the invariant integral of nonlinear fracture mechanics [3], In is the dimensionless J-integral, and σ̃ij(θ, n) is
the universal angular stress distribution determined by solving the boundary-value problem. Relations (1.2) rep-
resent the classical Hutchinson–Rice–Rosengren stress distribution at a crack tip in a material with the power-law
constitutive relations (1.1).

The interest of researchers has, for a long time, focused on constructing higher-order approximations in
asymptotic expansions of the stress and strain fields at a crack tip from the specified main term of the asymptotic
expansion — the Hutchinson–Rice–Rosengren solution [4–10]. At present, however, it seems urgent to find the
entire eigenvalue spectrum. Thus, in the problem of small-scale plastic flow with an asymptotic boundary condition
at an infinitely distant point, it is necessary to study the asymptotic behavior of the far stress field more carefully
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and, hence, to determine the other eigenvalues in eigenfunction expansions of stresses (see [11]). Stepanova and
Fedina [12] undertook an attempt to determine eigenvalues different from the eigenvalue of the Hutchinson–Rice–
Rosengren problem for various values of the nonlinearity parameter. This was done using a numerical method for
determining eigenvalues (the Runge–Kutta–Fel’berg method) in combination with a shooting method. In this case,
the shooting is one-parametric and eigenvalues are easily determined.

Lu and Lee [13] studied the eigenvalue spectrum of the problem of extension of a space with a semi-infinite
crack in a power-law material. As is shown in [13], it is insufficient to find one eigenvalue and higher-order approx-
imations of the Hutchinson–Rice–Rosengren problem [4]. It should be noted that, from a mathematical point of
view, the problems of opening mode and transverse shear cracks are more complex. In [13], eigenvalues are found
numerically only for some exponents of the power law (n = 3, 5).

In the present work, it is shown analytical dependences of eigenvalues on the material nonlinearity parameter
and the eigenvalue of the linear problem can be found using perturbation methods.

2. Formulation of the Problem. Basic Equations. We consider an antiplane-shear crack in a material
with the power-law constitutive relations

γrz = (3/2)Bτn−1
e τrz, γθz = (3/2)Bτn−1

e τθz, τ2
e = 3(τ2

rz + τ2
θz), (2.1)

where τe is the tangential stress intensity. In polar coordinates with pole at the crack tip, the equilibrium equation
and the strain compatibility condition are written as

∂

∂r
(rτrz) +

∂τθz

∂θ
= 0,

∂

∂r
(rγθz) =

∂γrz

∂θ
. (2.2)

Here and below, it is assumed that the stress and strain tensor components are normalized to τ0 and γ0, respectively
(τ0 is the limit of proportionality of the material if the constitutive relations considered describe nonlinear elastic
or plastic strain in terms of plastic strain theory; γ0 is the strain intensity corresponding to τ0).

We introduce the stress function

τrz =
1
r

Φ(r, θ)
∂θ

, τθz = −∂Φ(r, θ)
∂r

(2.3)

to satisfy the equilibrium equation identically. The strain compatibility condition implies a nonlinear partial dif-
ferential equation for the function Φ(r, θ). As is known, the use of power-law stress–strain relations leads to the
separation of the variables r and θ; therefore, the solution of the problem is sought in the form

Φ(r, θ) = rsf(θ) + . . . . (2.4)

The stress tensor components become

τij(r, θ) = rs−1τ̃ij(θ) + . . . .

Substitution of (2.4) into (2.3), (2.1) and into the compatibility condition [the second equation of system (2.2)]
yields the nonlinear ordinary differential equation for the function f(θ):

f ′′(nf ′2 + s2f2) + f(C1f
′2 + C2f

2) = 0. (2.5)

Here C1 = s(n − 1)(2s − 1) + s2 and C2 = s3(n − 1)(s − 1) + s4.
Equation (2.5) with the boundary conditions

f
∣
∣
∣
θ=±π

= 0 (2.6)

defines the nonlinear eigenvalue problem: to find the value of the parameter s for which problem (2.5), (2.6) has a
nontrivial solution.

3. Eigenvalues. The analytical expression for the eigenvalue s as a function of the material nonlinearity
parameter n and the eigenvalue s0 of the unperturbed linear problem (n = 1) can be found using the representation

s = s0 + ε, (3.1)

where ε is the deviation of the eigenvalue s from the eigenvalue s0 under a change in n.
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To estimate the effect of the change in n on the eigenvalue s, we represent the material nonlinearity parameter
and the required function in the form

n = 1 + εn1 + ε2n2 + . . . ; (3.2)

f(θ) = f0(θ) + εf1(θ) + ε2f2(θ) + . . . , (3.3)

where f0(θ) is the solution of the linear problem (n = 1).
Substituting (3.1)–(3.3) into (2.5) and collecting the coefficients of the same powers of the small parameter ε,

we obtain the following system of inhomogeneous linear ordinary differential equations for the functions f0(θ), f1(θ),
f2(θ), . . . :

f ′′
0 + s2

0f0 = 0; (3.4)

f ′′
1 + s2

0f1 = −s0[n1(s0 − 1) + 2]f0;

f ′′
2 + s2

0f2 = −[(n2f
′2
0 + f2

0 )f ′′
0 + (C2

1f ′2
0 + C2

2f2
0 )f0]/s2

0 . . . . (3.5)

Here C2
1 = n2s

2
0 − 1 + 3n1s0 + s0n2(s0 − 1) and C2

2 = s3
0[n2(s0 − 1) + n1].

The solution of Eq. (3.4) that satisfies the boundary conditions f0|θ=±π = 0 has the form

f0(θ) = A cos s0θ, s0 = m/2, m = ±1,±3,±5, . . . (3.6)

or

f0(θ) = B sin s0θ, s0 = m/2, m = 0,±2,±4, . . . .

Using the solution obtained for the function f0(θ), one can successively find the functions f1(θ), f2(θ), . . . .
Thus, we have the following boundary-value problem for determining the function f1(θ):

f ′′
1 + s2

0f1 = −s0[n1(s0 − 1) + 2]f0; (3.7)

f1

∣
∣
∣
θ=±π

= 0. (3.8)

Since the corresponding homogeneous problem has a nontrivial solution, to solve the inhomogeneous problem, we
need to find a certain solvability condition which will allow us to determine the coefficients nk of expansion (3.2).

4. Solvability Condition. It should be noted that in the use of perturbation methods, sets of problems
arise which should be solved successively [14]. In this case, the first-order problem is usually homogeneous whereas
higher-order problems are inhomogeneous but linear. If the corresponding homogeneous problem has a nontrivial
solution, the inhomogeneous problem has no solution if the corresponding solvability condition is not satisfied.

Let us consider the boundary-value problem for the inhomogeneous linear ordinary differential equation of
the second order

p2(x)y′′ + p1(x)y′ + p0(x)y = g(x), a < x < b; (4.1)

α11y
′(a) + α12y(a) + α13y

′(b) + α14y(b) = β1, α21y
′(a) + α22y(a) + α23y

′(b) + α24y(b) = β2, (4.2)

where the boundary operators are linearly independent, i.e., the matrix
(

α11 α12 α13 α14

α21 α22 α23 α24

)

has rank 2, and, hence, there is at least one nondegenerate matrix of size 2×2. Thus, at least one of the determinants

Δ11 =
∣
∣
∣
∣

α11 α12

α21 α22

∣
∣
∣
∣
, Δ13 =

∣
∣
∣
∣

α11 α13

α21 α23

∣
∣
∣
∣
, Δ14 =

∣
∣
∣
∣

α11 α14

α21 α24

∣
∣
∣
∣
,

Δ23 =
∣
∣
∣
∣

α12 α13

α22 α23

∣
∣
∣
∣
, Δ24 =

∣
∣
∣
∣

α12 α14

α22 α24

∣
∣
∣
∣
, Δ34 =

∣
∣
∣
∣

α13 α14

α23 α24

∣
∣
∣
∣

is different from zero.
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Generally, the boundary conditions may be mixed (or unseparated), i.e., they may contain the values of the
required function and its derivative at the ends of the segment [a, b]. Taking into account the boundary conditions
of the examined problem (3.8), we consider the case where the determinant Δ24 �= 0. Solution of Eqs. (4.2) for y(a)
and y(b) yields

y(a) = γ11y
′(a) + γ12y

′(b) + δ1, y(b) = γ21y
′(a) + γ22y

′(b) + δ2, (4.3)

where

γ11 = −Δ14

Δ24
, γ12 = −Δ34

Δ24
, γ21 =

Δ12

Δ24
, γ22 = −Δ23

Δ24
,

δ1 =
β1α24 − β2α14

Δ24
, δ2 =

β2α12 − β1α22

Δ24
.

To find the solvability condition for the general case, we consider a conjugate problem. We multiply Eq. (4.1)
by the function u(x), which is called the conjugate solution to be determined. As a result, we obtain

p2uy′′ + p1uy′ + p0uy = gu, a < x < b.

Term-by-term integration of this relation from a to b yields
b∫

a

p2uy′′ dx +

b∫

a

p1uy′ dx +

b∫

a

p0uy dx =

b∫

a

gu dx.

Next, integrating the first two terms by parts and performing some transformations, we have
b∫

a

[p2u
′′ + (2p′2 − p1)u′ + (p′′2 − p′1 + p0)u]y dx + {p2uy′ + [(p1 − p′2)u − p2u

′]y}
∣
∣
∣

b

a
=

b∫

a

gu dx. (4.4)

Setting the integrand on the left of the last equality to zero, we obtain the following differential equation for the
function u:

p2u
′′ + (2p′2 − p1)u′ + (p′′2 − p′1 + p0)u = 0; (4.5)

it is usually called conjugate with respect to the homogeneous equation (4.1). The homogeneous differential equation
corresponding to (4.1) is called self-conjugate if it coincides with the equation conjugate to it (4.5). These equations
coincide if the equalities 2p′2 − p1 = p1, p′′2 − p′1 = 0 or p1 = p′2 are valid. In this case, the homogeneous equation
corresponding to (4.1) has the form

p2y
′′ + p′2y

′ + p0y = 0.

To determine the boundary conditions required to close the conjugate problem, we consider the homogeneous
problem that corresponds to (4.1), (4.2). Then, relation (4.4) becomes (in the case of a self-conjugate equation)

{p2[uy′ − u′y]}
∣
∣
∣

x=b

x=a
= 0.

Using equality (4.3), the last relation can be brought to the form

[−γ21p2(b)u′(b) − p2(a)u(a) + γ11p2(a)u′(a)]y′(a)

+ [p2(b)u(b) − γ22p2(b)u′(b) + γ12p2(a)u′(a)]y′(b) = 0.

We choose the boundary conditions of the conjugate problem in such a manner that each coefficient at y′(a)
and y′(b) vanishes:

p2(a)u(a) − γ11p2(a)u′(a) + γ21p2(b)u′(b) = 0,

p2(b)u(b) + γ12p2(a)u′(a) − γ22p2(b)u′(b) = 0.
(4.6)
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Thus, the function u is a solution of the boundary-value problem for the equation

p2u
′′ + p′2u

′ + p0u = 0 (4.7)

with boundary conditions (4.6).
Having formulated the conjugate problem, we return to the initial inhomogeneous problem (4.1), (4.2) and

find a solvability condition for it. Since the function u satisfies Eq. (4.7), expression (4.4) becomes

{p2[uy′ − u′y]}
∣
∣
∣

x=b

x=a
=

b∫

a

gu dx.

Since the solution of the conjugate boundary-value problem u satisfies boundary conditions (4.2), the last
relation can be written as

δ1p2(a)u′(a) − δ2p2(b)u′(b) =

b∫

a

gu dx. (4.8)

Equality (4.8) is the required solvability condition, where u is a solution of the conjugate boundary-value problem.
5. Solvability Condition of Problem (3.7), (3.8). Returning to the boundary-value problem for the

inhomogeneous linear ordinary differential equation (3.7), whose solution should satisfy boundary conditions (3.8),
it is easy to establish that this equation is self-conjugate since, in this case, p2 = 1, p1 = 0, and p′2 = p1, and the
solvability condition is formulated as follows:

π∫

−π

gu dθ = 0. (5.1)

Here g is the right side of Eq. (3.7):

g(θ) = −s0[n1(s0 − 1) + 2]f0(θ),

the function u is the conjugate solution coincident with the function f0(θ). For odd numbers m, the function f0(θ) is
given by relation (3.6). In this case, the conjugate solution has the form

u = cos s0θ. (5.2)

It can be shown by simple calculations that the solvability condition is satisfied only by choosing the coeffi-
cient n1 = −2/(s0 − 1).

Similarly, for the function f2(θ), it can concluded that the solvability condition (5.1) and the conjugate
solution (5.2) have the same form. In this case, it is necessary to set

g(θ) = −[(n2f
′2
0 + f2

0 )f ′′
0 + (C2

1f ′2
0 + C2

2f2
0 )f0]/s2

0.

Performing necessary calculations, we establish that the solvability condition is satisfied only for n2 = (4s0 −
1)/(s0(s0 − 1)2).

Generalization of the results for an arbitrary coefficient nk leads to

n = 1 +
s0

s0 − 1

∞∑

k=1

(

− ε

s0 − s∗

)k

− 1
s0 − 1

∞∑

k=1

(

− ε

s0 − 1

)k

=
s

s − s∗
− s

s − 1
,

where s∗ = s2
0/(2s0 − 1).

Solving the obtained equation for s, we find the dependence of the eigenvalue on the material nonlinearity
parameter n and the eigenvalue of the linear problem s0:

s =
n(s2

0 + 2s0 − 1) + (s0 − 1)2

2n(2s0 − 1)
+

√

[n(s2
0 + 2s0 − 1) + (s0 − 1)2]2 − 4n2s2

0(2s0 − 1)
2n(2s0 − 1)

.

In the case s0 = 1/2, the asymptotic expansion for the material nonlinearity parameter becomes

n = 1 − 1
s0 − 1

∞∑

k=1

(

− ε

s0 − 1

)k

= − s

s − 1
,
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whence we obtain the well-known dependence of the eigenvalue on the nonlinearity parameter that corresponds to
the Hutchinson–Rice–Rosengren solution:

s = n/(n + 1).

Conclusions. A method based on perturbation theory was proposed to determine the eigenvalues of the
antiplane shear crack problem in a power-law material. It should be noted that the perturbation method for
determining the eigenvalues of the crack problem was used in [15], where expressions for the expansion coefficients
nk were derived by eliminating the secular terms in solutions of equations for the function fk. However, the presence
of secular terms in the solution of the problem studied is not a contradiction because the solution is sought on the
finite segment [−π, π] and not on the semi-infinite interval (as is known from perturbation theory, exactly the
presence of an infinite region is responsible for the occurrence of nonuniformly suitable expansions — in this case,
expansions having secular terms). The second reason for addressing this problem is that the approach developed
in [15] cannot be extended to the case of mathematically more complex problems of opening mode and transverse
shear cracks. Studies of these mode of loading of cracked solids have shown that the corresponding problems include
secular terms of two kinds, whose elimination results in two equations for one unknown quantity nk in the k-th
step. The approach presented in this paper is free from these drawbacks and can be used to solve opening-mode
and transverse-shear crack problems.

This work was supported by the Russian Foundation for Basic Research (Grant No. 06-08-01059).
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